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Abstract

Aim: Nigella sativa seeds contain a high amount of Thymoquinone (TQ), an antioxidant. We therefore 
hypothesized that Nigella sativa oil would, through the antioxidant properties of TQ ameliorate obesity-induced 
hyperglycemia and decrease blood pressure and OX-LDL in obese mice. 

Methods: Commencing at eight weeks of age, C57B16 male mice were fed a high fat diet (HF) for 20 weeks. 
Mice were divided into three groups of five animals each as follows: group 1) Lean, group 2) HF diet, group 3) HF diet 
treated for the last 8 weeks with 3%TQ. Inflammatory biomarkers, antioxidant biomarkers, mitochondrial biogenesis 
and tissue fat accumulation and hepatic steatosis were determined. 

Results: 3% TQ treatment resulted in an increase of oxygen consumption decreased fasting glucose and blood 
pressure (P<0.05) as compared in obese mice. TQ treatment increased both the quantity of hepatic HO-1, and 
HO activity in response to 3% TQ. Additionally, mitochondrial Mfn2, PGC1α, insulin receptor phosphorylation in 
response to TQ while decreased LDL and OX-LDL (P<0.05) and haptic lipid accumulation. 

Conclusion: Fundamentally, TQ intervention attenuated the obesity-mediated decrease of oxygen consumption, 
fasting glucose, improved mitochondrial biogenesis through an increase and in levels of HO-1 that is associated with 
ablated HF-induced LDL. Our findings indicate a potential clinical role for TQ in the prevention of obesity-related 
steatosis in metabolic disease.
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Abbreviations
CVD: Cardiovascular Disease; FBS: Fetal Bovine Serum; FFA: Free 

Fatty Acids; Fis-1: Mitochondrial Fission 1 Protein; HbA1c: Glycated 
Hemoglobin A1C; HO-1: Heme Oxygenase 1; HO-2: Heme Oxygenase 
2; HDL: High Density Lipoprotein; HFD: High Fat Diet; LDL: Low 
Density Lipoprotein; MetS: Metabolic Syndrome; MFN-1: Mitofusin 
1; MFN-2: Mitofusin 2; NADPH: Dihydronicotinamide-Adenine 
Dinucleotide Phosphate; NAFLD: Non-Alcoholic Fatty Liver Disease; 
NASH: Non-Alcoholic Steato-Hepatitis; NOV: Nephroblastoma 
Overexpressed; NRF2: Nuclear Factor (erythroid-derived)-like 2; OPA-
1: Optic Atrophy 1; OX-HDL: Oxidized HDL; OX-LDL: Oxidized LDL; 
PMSF: Phenylmethylsulfonyl Fluoride; ROS: Reactive Oxygen Species; 
T2DM: Type 2 Diabetes Mellitus; TQ: Thymoquinone.

Introduction 
According to the World Health Organization, annually over 2 

million people die worldwide from the complications of excessive body 
fat. An altered adipose tissue function is characterized by an impaired 
lipid buffering capacity and subsequently by a systemic lipid over flow 
and ectopic lipid accumulation in several insulin sensitive peripheral 
tissues such as skeletal muscle, liver, pancreas, heart and kidneys [1,2]. 
This obesity trend is followed in men and women, both having a similar 
pattern, being around 40-45% obese in middle age around 35% obese 
when younger [3]. The ectopic deposition of triglycerides triggers a series 
of cardiometabolic perturbations, which are grouped into a diagnosis 
of metabolic syndrome (MetS). This disorder is not only associated 
with a higher risk of appearance of type 2 diabetes and cardiovascular 

events but impacts the liver [4]. Recent data suggest that nonalcoholic 
fatty liver disease (NAFLD), considered the hepatic manifestation of 
the MetS, precedes the development of MetS [5]. NAFLD is associated 
with a number of metabolic diseases including diabetes mellitus, obesity 
and hypertension. In a five-year retrospective review, individuals with 
NAFLD had a higher incidence of impaired fasting glucose and type 2 
diabetes mellitus (T2DM) compared with NAFLD-free controls [6]. In 
the last few decades, a higher frequency of obesity, T2DM, and MetS 
have occurred as a result of various dietary changes [7]. Furthermore, 
individuals with NAFLD have a higher probability of liver failure and, 
eventually, cirrhosis [8-10]. Epidemiological results suggest that insulin 
resistance is a common pathogenic factor for all these obesity-related 
conditions and that it can be both reversed and prevented by a healthy 
lifestyle and a wholesome diet [11]. In this regard, beneficial effects 
have been reported for curcumin and Resveratrol [12] which increase 
the antioxidant gene and heme oxygenase-1 (HO-1). Resveratrol 
upregulates HO-1 expression, NAD(P)H, quinone oxidoreductase 1, 
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through activation of nuclear factor (erythroid-derived)-like 2 (Nrf2) 
target genes. Resveratrol as well as other HO-1 inducers prevent CVD 
[13]. Importantly, HO-1 induction is regulated by levels of glucose; 
while glucose deprivation induces HO-1 gene expression [14], elevated 
levels of glucose suppress HO-1 gene expression [15,16]. HO-1 levels is 
affected by obesity and glucose levels (reviewed in [3,17]).

Thymoquinone, present in Nigella sativa (NS), has been proposed, 
based on its anti-oxidant properties, as a protective factor against 
several metabolic diseases. Nigella sativa Linn. (family Ranunculaceae), 
commonly known as black seed or black cumin, is an herbal plant 
that has been cultivated for thousands of years in the Middle and 
South East Asia. Black cumin seed is composed of fixed (stable) and 
essential (volatile). The Essential oil extracted from black cumin 
contains a rich volatile fraction comprising Thymoquinone (TQ) and 
Thymohydroquinone (THQ) [18,19]. Thymoquinone (TQ) is the main 
pharmacologically active compound of NS and is thought responsible 
for many therapeutic properties, including anti-inflammatory, 
antioxidant and anti-hyperglycemic effects. The protective effect of 
TQ is related to its ability to scavenge reactive oxygen species (ROS), 
including superoxide and hydroxyl free radicals [20], to block lipid 
peroxidation and to enhance levels of antioxidant enzymes [21,22]. 
The aim of this study was to demonstrate the effects of black seed 
oil, with a high content of TQ, on the metabolic profile, including 
adipose-mediated release in inflammatory adipokines such as NOV, 
mitochondrial biogenesis, LDL, Ox-HDL and hepatic steatosis in a 
murine model of obesity.

Materials and Methods
Animal protocols

Eight-week-old C57B16 male mice were fed western diets with 51% 
fat content while control mice fed regular diets, high fat diets (Harlan, 
Teklad Lab animal diets, Indianapolis, IN) (HFD) for 20 weeks. Mice 
were divided into three treatment groups of five animals each as follows: 
group 1) Lean, group 2) HFD, group 3) HFD treated for the last 8 weeks 
with HFD treated for the last 8 weeks with black seed-cold press oil 
formulation containing thymoquinone (TQ) between 3-3.1% obtained 
from TriNutra Israel. Formulation of TQ oil is as follows; TQ 3.14 %, 
p-Cymene, 1.24%, Carvacrol 0.08%, FFA 1,29%, Oleic Acid 21.53%, 
palmitic acid 11.31%, linoleic acid 57.44%, other fatty acid 1.98% and 
TPGS, 0.8%. TQ oil was mixed into the HFD food and made into pellets 
using a mixer. At the end of the experiment, mice were euthanized, 
assessed for total body weight, fat content and liver fibrosis. All animal 
experiments followed the NYMC IACUC institutionally approved 
protocol in accordance with NIH guidelines. 

Fasting blood glucose, glucose tolerance testing

Fasting blood glucose and glucose tolerance were measured from 
tail blood following a 6 h fast. Blood pressure was measured by the 
tail-cuff method using the CODA tail-cuff System (Kent Scientific, CT, 
Torrington) as we previously described [23-25].

Determination of oxygen consumption 
The C57 mice groups were allowed to acclimatize in the oxygen 

consumption chambers over a three-week period. Adaptation periods 
for the three-week duration were executed in two-hour increments, 
three times a week. The Oxylet gas analyzer and air flow unit (Oxylet, 
Panlab-Bioseb, Vitrolles, France) were used to determine mouse 
oxygen consumption (VO2). Each mouse was placed individually 
in the machine and VO2, VCO2 and respiratory quotient (RQ) was 

calculated as VCO2/VO2. The data for VO2 are expressed as the 
consumed oxygen per Kilogram body weight per minute (ml/kg/min) 
[23-25]. 

Measurement of HO activity 
Liver microsomal HO activity was assayed by the method of 

Abraham et al. in which liver tissues was homogenates in phosphate 
buffer, pH 7.8, 0.1 mM EDTA and 1mM PMSF. HO activity was 
measured in presence of 20 uM heme, glucose 6 phosphate (G-6P), 
glucose 6 phosphate dehydrogenase (G6PDH), NADPH, at 37°C for 
60 minutes. Bilirubin, the product of HO degradation was extracted 
with chloroform, spin down and leave overnight in the freezer. Samples 
defrost; spin the samples for 20 minutes and with pasture pipets 
remove the lower layer which has chloroform. Bilirubin concentration 
in chloroform determined spectrophotometrically (Perkin-Elmer 
(Norwalk, CT) Dual UV/VIS Beam Spectrophotometer) using the 
difference in absorbance at wavelength from λ 460 to λ 530 nm with an 
absorption coefficient of 40 mM-1 and cm-1.

Western blot analysis
For protein expression analyses, liver tissues were lysed in RIPA 

lysis buffer supplemented with protease and phosphatase inhibitors 
(CompleteTM Mini and PhosSTOPTM, Roche Diagnostics, 
Indianapolis, IN) Frozen mouse adipose tissue was ground under 
liquid nitrogen and suspended in homogenization buffer (comprising 
mmol/L :10 phosphate buffer, 250 sucrose, 1.0 EDTA, 0.1 PMSF and 
0.1%v/v tergitol, pH 7.5). For In vitro Western blot analysis pelleted 
cells were lysed and HO-1, HO-2, OPA1, MFN1, MFN2 and NOV 
proteins were measured. Protein detection was carried out using a 
secondary infrared fluorescent dye conjugated antibody absorbing at 
both 800 nm and 700 nm. The blots were visualized using an Odyssey 
Infrared Imaging Scanner (Li-Cor Science Tec) and quantified by 
densitometric analysis performed after normalization with β-actin. 
Results were expressed as arbitrary units (AU).

Histopathological examination of liver tissue 
Liver samples from each experimental group were fixed in 4% 

paraformaldehyde, dehydrated, embedded in paraffin wax, and 
sectioned (6 μm thick). The main liver histopathological features 
commonly described in NAFLD including steatosis, inflammation, 
hepatocyte ballooning, and fibrosis were scored according to the 
NAFLD histologic activity score (NASH) system, and lipid droplet 
analysis was performed as previously described [26]. 

Cell culture and adipocyte cell differentiation 
3T3-L1 murine pre-adipocytes, were purchased from American 

Type Culture Collection (Rockville, MD, USA). After thawing, 3T3-
L1 cells were resuspended in DMEM, supplemented with 10% heat 
inactivated fetal bovine serum (FBS, Invitrogen, Carlsbad, CA, USA) 
and 1% antibiotic/antimycotic solution (Invitrogen). The medium was 
replaced with adipogenic medium, and the cells were cultured for an 
additional 6 days. Differentiating 3T3-L1 pre-adipocytes were treated 
for 6 days with 3% TQ (2, 4, 6 M).

Oil red O staining
Staining was performed using 0.21% Oil Red O in 100% isopropanol 

(Sigma-Aldrich, St. Louis, MO, USA). Briefly, adipocytes were fixed 
in 10% formaldehyde, stained with Oil Red O for 10 minutes, rinsed 
with 60% isopropanol (Sigma-Aldrich), and the Oil Red O eluted by 
adding 100% isopropanol for 10 minutes and the optical density (OD) 
measured at 490 nm, for 0.5 sec reading.
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Statistical analysis
Data are expressed as means ± S.E.M. Bonferroni’s post -test 

analysis for multiple comparisons was used to calculate the significance 
of mean value differences using one-way analysis of variance. The null 
hypothesis was rejected at p<0.05.

Results
Effects of TQ on body weight, blood pressure, fasting blood 
glucose and oxygen consumption

We examined the effect of TQ in mice fed a HFD for 20 weeks 
(Figures 1 and 2). Blood pressure and fasting blood glucose levels were 
increased in mice fed a HFD as compared to control animals (Figure 
1A and 1B). TQ reduced blood pressure and fasting blood glucose 
levels in mice fed a HFD. Mice on a HFD displayed a decrease in VO2 
consumption. In contrast, TQ produced a significant (p<0.05) increase 
in oxygen consumption (Figure 1C). As shown in Figure 2, weight 
of the HFD group was increased (p<0.05) compared to Lean, but no 
difference occurred between the HFD and TQ groups. 

Effect of TQ on adipogenesis in vitro
TQ decreased large lipid droplet content in differentiated 

adipocytes compared with differentiated control cells (p< 0.05) (Figure 
3A and 3B). Furthermore, TQ3 3% decreases oil lipid accumulation 
seen clearly between differentiation cell and cells treatment with 
TQ 3% at 6 M, suggesting that TQ decreased adipocyte terminal 
differentiation preventing the conversion of small “healthy” adipocytes 
to large adipocytes. TQ decreased lipid content in a dose-dependent 
manner (Figure 3B). Sardana and Kappas reported that the increase 
in HO-1mRNA and protein are several orders of magnitude higher 
than the increase in liver HO activity [27], therefore, we measured the 
consequence of TQ treatment on liver HO activity and generation of 
bilirubin anti-oxidant effect. Since HO-1 converts heme to equimolar 
amounts of CO and bilirubin (20), we measured HO activity by 
formation of bilirubin. HO activity in control liver tissues was 0.81 ± 
0.16 nmol bilirubin formed/mg protein/hour and decreased to 0.49 ± 
0.12 nmol bilirubin formed/mg protein/hour in high fat liver (p<0.05) 
(Figure 3B-3F). The stimulatory effect of 3%TQ on HO-1 protein was 
associated with an increase in HO activity (Figure 3G) to 0.78 ± 0.12 
nmol bilirubin/mg/hour (p<0.05).

Effects of TQ on protein expression in adipose tissue

Western blot analysis of fat tissue showed significant differences 
in protein expression levels of pIR972, HO-1, Fis-1, Mfn2 and 
NOV in obese mice compared to control mice. Untreated obese 
animals exhibited a significant (p<0.05) decrease in insulin receptor 
phosphorylation levels and HO-1 when compared to age-matched lean 
mice. TQ increased both pIR972 mitochondrial fusion protein and HO-1 
levels in obese mice (Figure 4A-4E). A HFD resulted in a decrease in 
Mfn2 (p<0.05) and an increase in FIS-1 a fission protein (p<0.05). TQ 
treatment reversed the negative effect on mitochondrial protein as 
seen by the increased in the levels of MFN2 (p<0.05) and decreased 
FIS-1 (p<0.05) compared to HF mice (Figure 4B and 4D). As seen in 
Figure 4D, levels of adipose tissue derived NOV, a pro-inflammatory 
protein in lean group are significantly (p<0.05) lower than in the HFD 
group. As shown in Figure 4C, TQ treatment decreased NOV protein 
expression compared to mice fed a HFD alone.

TQ intervention decreased level lipid, steatosis and fibrosis

Liver of lean mice exhibited no significant steatosis, no 
inflammatory foci and no fibrosis (Figures 5 and 6). Livers of HFD mice 
had elevated steatosis, moderate lobular inflammatory loci, hepatocyte 
ballooning, and fibrosis. Lipid content (Figure 5) was significantly 
increased (p<0.05) in mice fed a HFD as compared to control mice. 
TQ treatment decreased lipid content as compared to mice on a HFD 
alone. Morphometric analysis of liver lipid droplets showed that TQ 
decreased lipid droplet diameter compared to the HFD group (p<0.05). 
As seen in Figure 6, non-treated HFD mice display more fibrosis than 
HFD mice treated with TQ. TQ reduced HFD-induced fibrosis and 
collagen deposition (p<0.05).

Effect of TQ on MFN-1, MFN-2, OPA1, NOV, HO-2 and HO-1 
protein expression 

Control obese mice exhibited lower hepatic protein expression 
of MFN-1, MFN-2, OPA1 and HO-1. TQ produced a significant (p< 
0.05) increase in the hepatic levels of MFN-1, MFN-2, OPA1 and 
HO-1 (Figure 7). TQ prevented the HFD-mediated increase in NOV 
expression (Figure 7). No significant changes were observed on HO-2 
among the different groups.

Figure 1: Effect of TQ on blood pressure, blood glucose, oxygen consumption and body weight. Results are mean +/- SE n=6, 
*p<0.05 vs lean mice, #p<0.05 vs HFD mice.
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Figure 3G: HO activity in control, HF untreated and HF-treated with 3%TQ 
treated mice. HO activity was determined and results are mean±SE, n= 3, 
*p<0.05 vs. control, # p<0.05 vs. HF mice.

Figure 2: Effect of TQ on oil droplets formation in 3T3 adipocytes. We measured the effect of 3% TQ administration on adipogenesis. 
Daily supplementation of TQ was effective on adipogenesis suppression at 6 days. TQ treatment showed a significant (p<0.05) 
reduction of lipid droplets formation in 3T3 adipocytes. (n=4), #p<0.05 vs. control, ** p<0.05 vs. control.

Figure 3:  Effect of TQ administration on levels of HO-1, Fis1, MFN2, NOV and pIR972 in adipose tissue on Lean, HFD and HFD +3% 
TQ. Representative western blots; (A) and densitometry analysis of (B) pIR972, (C) MFN2, (D) NOV, (E) Fis1,  (F) HO-1 of Lean, HFD 
and HFD +3% TQ. Results are mean ± SE, n=6, *p<0.05 vs. Lean, #p<0.05 vs. HFD.

Effect of TQ on serum levels of Oxidized LDL, OX-LDL and 
HDL

Plasma from obese mice displayed an increase in LDL and OX-
LDL and a decrease in HDL levels. TQ reduced the levels of LDL and 
oxidized LDL (p<0.05), HDL levels were unaffected.

Discussion
TQ is an active component of TriNutra’s™ Nigella seed oil and is 

considered responsible for most of the latter therapeutic potential. The 
plant Nigella sativa (N. sativa) has been used throughout the world in 
various traditional systems of medicine as a therapy for many different 
ailments and conditions. The key finding of the present study highlights 
the hepato-protective effects of TQ in a rodent model of NAFLD. 
TQ administration for 8-weeks reduced hepatic fat accumulation 
preventing the development of NASH and liver fibrosis in 36-week 
study of obese mice. NAFLD affects ~ 25% of the adult population 
and is the most common cause of chronic liver disease in the Western 
World. Concomitantly it is associated with obesity, type II diabetes 
and hyperlipidemia, and may serve as a marker of increased morbidity 
and mortality from cardiovascular disease. While the mechanism 
of NAFLD has not been elucidated, it is manifest as tissue injury as 
a result of fat accumulation. In this process oxidative stress results 
in mitochondrial damage [28,29] and tissue dysfunction manifest as 
hepatocellular oxidative damage leading to hepatic inflammation 
(non-alcoholic steatohepatitis). Hepatic dysfunction leads to fibrosis 
followed by cirrhosis, liver failure and hepatocellular carcinoma. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/adipocyte
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/adipogenesis
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/lipid-droplet
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Figure 4: Haematoxylin-eosin staining of liver of lean (A), HFD (B), HFD treated with 1% TQ (C), and HFD treated with 3% TQ (D) 
mice. Graphs summarize the morphometrical analysis of liver lipid droplet diameter (F) and adipose tissue percentage (G). * p< 0.05 
versus lean; # p< 0.05 versus HFD. Bar 50 𝜇m. Yellow arrowheads show inflammatory cells, green arrows indicate adipose tissue 
and * denote centrolobular vein.

Figure 5:  Masson’s trichrome staining of liver and presence of fibrosis, lean (A), HF diet (B), HFD treated with 1% TQ (C), and HF 
diet treated with 3% TQ (D) mice. Graph summarizes the morphometrical analysis of fibrosis percentage (F). *p<0.05 versus lean; # 
p<0.05 versus HFD. Bar 50 𝜇m. 

Treatment of obese mice with TQ improves mitochondrial function in 
adipose and hepatic steatosis by decreasing levels of adipocyte derived 
NOV, and increasing, an antioxidant gene, HO-1 expression, resulting 
in increased mitochondrial biogenesis, function, and fusion potential, 
leading to an improvement in oxidative stress and inflammation in 
obese mice. The following key findings substantiate this conclusion. A 
HFD increased the expression of the genes regulating mitochondrial 
fission in mice, while concomitantly reducing the expression of 
the genes responsible for mitochondrial quality control and fusion 
processes in adipose and hepatic tissue. We further investigated 
whether TQ treatment positively affect signaling proteins. TQ positively 
increased HO-1 and insulin receptor phosphorylation in liver adipose 
tissue (Figures 7 and 8). Similar effect is seen in heart and kidney 
signaling protein (data not shown). A HFD enhanced FFA generation 
and increased mitochondrial dysfunction and ROS levels [30,31]. 
Mitochondrial dysfunction results in a decrease in beta oxidation in the 
liver allowing fat to accumulate resulting in a “fatty liver” [26,32,33]. 
TQ reduced mitochondrial fission potential and normalized an 
enhanced expression of mitochondrial fusion-associated genes in mice 

fed a HFD. TQ is a natural antioxidant and hypoglycemic compound 
that may prove advantageous therapeutically when compared to the 
high cost and the adverse effects of pharmacological drugs. 

NOV expression in obese mice was increased when compared to 
lean mice, the levels of NOV in HFD-fed mice treated with TQ were 
lower than mice fed a HFD alone. Increased NOV levels are linked to 
increased levels of inflammatory cytokines which deleteriously affect 
insulin signaling, resulting in insulin resistance and eventually obesity 
[34,35]. In contrast, downregulation of NOV is associated with a 
reduction in adipose tissue deposition and inflammatory cytokines, as 
well as enhanced insulin sensitivity in obese mice [23,26].

Figures 4 and 5 showed that TQ improved hepatic steatosis, fibrosis 
and metabolic balance in obese mice. More importantly, ingestion of 
TQ in HF mice led to a reversal of this trend and a resultant increase in 
both the level and activity of HO-1, which strongly suggests a role for 
HO-1 and HO activity in the antioxidant and anti-inflammatory effect 
of TQ. Other report in agreement with our finding that induction of 
HO-1 suppresses adiposity and diabetes [36,37]. Further, sex-depends 
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Figure 6:  Effect of TQ administration increases mitochondrial function, antioxidant HO-1 and decreases cytokine NOV in liver tissue 
on obese mice.  Representative western blots; (A) and densitometry analysis of (B) MFN1, (C) MFN2,  (D) OPA1, (E) NOV, (F) HO-1 
and (G) HO-2 of  Lean, HFD and HFD +3% TQ. Results are mean ± SE, n=6, *p<0.05 vs. Lean, #p<0.05 vs. HFD.

Figure 7:  Analysis on plasma levels of (A) LDL, (B) OX-LDL and (C) HDL in Lean, HFD and HFD + 3% TQ mice respectively. Results 
are mean ± SE, n=6, *p<0.05 vs. Lean, #p<0.05 vs. HFD diet.

effect of HO-1 in adipose is well described [38], in which expression of 
HO-1 in adipose tissue may have a greater protective role in female as 
compared to male [38]. 

Further, HO-1 is considered a novel target for the treatment of 
hypertension and obesity [39]. More importantly beneficial effect of 
HO-1 is seen in human liver transplant biopsies; subjects with higher 
HO-1 levels showed decreased hepatocellular damage and improved 
outcomes [40].

Additionally, it appears that the increase of HO-1 levels, decrease 
in pro-inflammatory NOV expression and the normalization of 
mitochondrial function rescue liver function in obese mice. The 
beneficial effects of TQ on hepatic protein expression suggest an anti-
steatosis effect that prevents disease progression to steatohepatitis in 
our animal model support the effect on decrease fasting glucose and 
oxygen consumption. 

It appears that TQ was capable of reprogramming the adipocyte 

phenotype by regulating energy gene and mitochondrial function 
and HO-1 expression, leading to an increase in “healthy”, i.e. small, 
adipocytes and a decrease in large adipocyte qualitatively and in 
terminal differentiation as evidence suggesting that increase in 
activity as evidence of increase in oxygen consumption, may maintain 
healthier adipocytes in obese mice. This occurred without body weight 
change, further, TQ improved the metabolic profile of obese mice by 
lowering fasting glucose, BP and hypertension, and increasing oxygen 
consumption compared to non-treated obese mice. One plausible 
explanation for body weight remaining unchanged could be the direct 
effect of TQ on adipocyte hyperplasia. This supports the hypothesis 
that the expansion of adipocytes may lead to an increased number 
of adipocytes of smaller size; smaller adipocytes are considered to be 
“healthy”, insulin-sensitive adipocyte cells that are capable of producing 
adiponectin [41,42]. There is a tight link exists between adipocyte 
hypertrophy and inflammation; followed by a reduction in adipocyte 
size leading to amelioration of metabolic functions [43-46]. In our 
current study we show that TQ decreased lipid content. In agreement 
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Figure 8: Schematic representation of TQ effects on reprogram adipocyte 
phenotype from naïve state to healthy adipocyte that increase activity of HO-
1, mitochondrial proteins and insulin receptor phosphorylation. TQ treatment 
change the quality of fat from sick fat, adiposopathy, to healthy fat, i.e., 
metabolically active, that express more mitochondrial signaling, increase 
oxygen consumption and increase insulin receptor phosphorylation.

with our in vivo results and previously published reports, the increase of 
HO-1 levels in adipocytes turns large unhealthy adipocytes into small 
healthy insulin-sensitive adipocytes [47]. In addition, the decrease in 
pro-inflammatory adipocyte NOV expression, the increase of HO-1 
levels and the increased levels of insulin receptor phosphorylation in 
adipose tissue lead to the normalization of mitochondrial function and 
a reversal of adipocyte phenotype from an inflammatory to a healthy 
functional status. Together, these results clearly indicate that activation 
of the HO-1 antioxidant response is crucial to the beneficial effects of 
TQ on mitochondrial biogenesis and on the reduction of fission and 
increase of fusion-associated processes in both adipose and hepatic 
tissue.

Importantly, in obesity, it is well established that there is 
association of elevation in HDL and OxHDL in obese animals. Obese 
mice treated with TQ demonstrated a significant decrease in LDL and 
OX-LDL levels. LDL oxidation, as well as HDL oxidation, is critical 
in the development of atherosclerosis and NAFLD has many features 
in common with cardiovascular disease, including lipid accumulation, 
macrophage activation and infiltration, and inflammation [48-50]. 
The activation of Kupffer cells by OX-LDL leads to a rapid release 
of various inflammatory mediators and signaling molecules such 
as cytokines, ROS, proteases, and lipid mediators that contribute to 
hepatic inflammation [51]. Fundamentally, TQ ingestion that result in 
decrease in OX-LDL and inflammatory molecule, NOV and increase in 
mitochondrial biogenesis and attenuates liver steatosis and NASH will 
contribute to an increase in insulin sensitivity and organ protection, 
indicates the potential of this nutraceutical approach to prevent 
disease progression in an animal model of metabolic syndrome. TQ 
intervention that contributes to lower blood pressure, fasting glucose 
may be beneficial to obese and non-obese subjects, may involve the 
increase of HO-1. HO-1 induction shown to lower blood pressure in 
hypertensive and obese animal models [52-55]. The beneficial effects of 
TQ in the pathogenesis of NAFLD in a murine model of obesity offer 
a portal into therapeutic approaches to the treatment of this and other 
obesity-related diseases.
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